Lee Harrold

GenAI Capability Combinations Guide

Common Solution Patterns

Enhanced Search & Retrieval

Core Components:
Text Embeddings + RAG + Semantic Search + Ranking Models

What it enables:

Example Flow:

  1. Text embeddings create searchable vectors
  2. Semantic search finds relevant documents
  3. Ranking models prioritize results
  4. RAG incorporates selected content into LLM response

Intelligent Content Generation

Core Components:
RAG + Content Control + Self-Reflection + LLM-as-Judge

What it enables:

Example Flow:

  1. RAG provides factual context
  2. Content controls manage style/tone
  3. Self-reflection checks output quality
  4. LLM-as-Judge validates final result

Code Assistant Pipeline

Core Components:
Code Generation + Function Calling + Structured Output + Self-Reflection

What it enables:

Example Flow:

  1. Code generation creates initial code
  2. Function calling handles API integration
  3. Structured output ensures proper formatting
  4. Self-reflection validates code quality

Multimodal Processing

Core Components:
Vision Language Models + TTS + STT + Image Generation

What it enables:

Example Flow:

  1. Vision models process visual input
  2. LLMs generate textual descriptions
  3. TTS converts text to speech
  4. Image generation creates visual responses

Automated Workflow Agent

Core Components:
LLMs as Agents + Prompt Chaining + Function Calling + Zero-shot Classification

What it enables:

Example Flow:

  1. Zero-shot classification categorizes tasks
  2. Prompt chaining breaks down complex tasks
  3. Agents coordinate execution
  4. Function calling integrates with systems

Learning & Adaptation

Core Components:
Fine-tuning + Few-Shot Learning + Knowledge Distillation + Chain-of-Thought

What it enables:

Example Flow:

  1. Fine-tuning adapts to domain
  2. Few-shot learning handles new cases
  3. Chain-of-thought improves reasoning
  4. Knowledge distillation optimizes for deployment

Advanced Combinations

Content Moderation System

Document Processing Pipeline

Interactive Assistant

Development Environment

Content Creation Suite

Optimization Considerations

Performance Enhancement Pairs

Quality Control Pairs

Scalability Pairs

Anti-Patterns to Avoid

  1. Overcomplicated Chains

    • Avoid: Excessive prompt chaining without clear purpose
    • Instead: Use focused combinations with clear handoffs
  2. Redundant Validation

    • Avoid: Multiple layers of LLM-as-Judge and Self-Reflection
    • Instead: Choose most appropriate validation method
  3. Inefficient Processing

    • Avoid: Running heavy models when lighter ones suffice
    • Instead: Use Model Optimization and Knowledge Distillation
  4. Memory Intensive Combinations

    • Avoid: Large RAG + Complex Prompt Chains
    • Instead: Use efficient retrieval and processing strategies