GenAI Capability Combinations Guide
Common Solution Patterns
Enhanced Search & Retrieval
Core Components:
Text Embeddings + RAG + Semantic Search + Ranking Models
What it enables:
- More accurate and contextual search results
- Better handling of complex queries
- Improved content relevance
- Factual grounding for responses
Example Flow:
- Text embeddings create searchable vectors
- Semantic search finds relevant documents
- Ranking models prioritize results
- RAG incorporates selected content into LLM response
Intelligent Content Generation
Core Components:
RAG + Content Control + Self-Reflection + LLM-as-Judge
What it enables:
- Factually accurate content creation
- Style-consistent outputs
- Quality-controlled generation
- Iterative improvement
Example Flow:
- RAG provides factual context
- Content controls manage style/tone
- Self-reflection checks output quality
- LLM-as-Judge validates final result
Code Assistant Pipeline
Core Components:
Code Generation + Function Calling + Structured Output + Self-Reflection
What it enables:
- Reliable code generation
- API integration
- Documentation generation
- Code quality checks
Example Flow:
- Code generation creates initial code
- Function calling handles API integration
- Structured output ensures proper formatting
- Self-reflection validates code quality
Multimodal Processing
Core Components:
Vision Language Models + TTS + STT + Image Generation
What it enables:
- Rich media understanding
- Accessible content creation
- Cross-modal translation
- Interactive experiences
Example Flow:
- Vision models process visual input
- LLMs generate textual descriptions
- TTS converts text to speech
- Image generation creates visual responses
Automated Workflow Agent
Core Components:
LLMs as Agents + Prompt Chaining + Function Calling + Zero-shot Classification
What it enables:
- Complex task automation
- Dynamic workflow handling
- Flexible task categorization
- System integration
Example Flow:
- Zero-shot classification categorizes tasks
- Prompt chaining breaks down complex tasks
- Agents coordinate execution
- Function calling integrates with systems
Learning & Adaptation
Core Components:
Fine-tuning + Few-Shot Learning + Knowledge Distillation + Chain-of-Thought
What it enables:
- Domain adaptation
- Efficient learning
- Improved reasoning
- Deployment optimization
Example Flow:
- Fine-tuning adapts to domain
- Few-shot learning handles new cases
- Chain-of-thought improves reasoning
- Knowledge distillation optimizes for deployment
Advanced Combinations
Content Moderation System
- Vision Language Models + Zero-shot Classification + LLM-as-Judge
- Enables multi-modal content understanding and evaluation
Document Processing Pipeline
- Text Summarization + RAG + Structured Output + Semantic Search
- Creates searchable, structured knowledge bases
Interactive Assistant
- STT + Function Calling + TTS + Self-Reflection
- Enables voice-based interaction with systems
Development Environment
- Code Generation + Fine-tuning + Ranking Models + Chain-of-Thought
- Creates context-aware coding assistance
Content Creation Suite
- Image Generation + Vision Language Models + Content Control + LLM-as-Judge
- Enables controlled multi-modal content creation
Optimization Considerations
- Model Optimization + Knowledge Distillation
- RAG + Semantic Search
- Fine-tuning + Few-Shot Learning
Quality Control Pairs
- Self-Reflection + LLM-as-Judge
- Chain-of-Thought + Structured Output
- Content Control + Ranking Models
Scalability Pairs
- Text Embeddings + Semantic Search
- Prompt Chaining + Function Calling
- Model Optimization + Knowledge Distillation
Anti-Patterns to Avoid
-
Overcomplicated Chains
- Avoid: Excessive prompt chaining without clear purpose
- Instead: Use focused combinations with clear handoffs
-
Redundant Validation
- Avoid: Multiple layers of LLM-as-Judge and Self-Reflection
- Instead: Choose most appropriate validation method
-
Inefficient Processing
- Avoid: Running heavy models when lighter ones suffice
- Instead: Use Model Optimization and Knowledge Distillation
-
Memory Intensive Combinations
- Avoid: Large RAG + Complex Prompt Chains
- Instead: Use efficient retrieval and processing strategies